3.208 \(\int \frac {x (a+b \cosh ^{-1}(c x))^2}{(d-c^2 d x^2)^{3/2}} \, dx\)

Optimal. Leaf size=196 \[ \frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {4 b \sqrt {c x-1} \sqrt {c x+1} \tanh ^{-1}\left (e^{\cosh ^{-1}(c x)}\right ) \left (a+b \cosh ^{-1}(c x)\right )}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {2 b^2 \sqrt {c x-1} \sqrt {c x+1} \text {Li}_2\left (-e^{\cosh ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {2 b^2 \sqrt {c x-1} \sqrt {c x+1} \text {Li}_2\left (e^{\cosh ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}} \]

[Out]

(a+b*arccosh(c*x))^2/c^2/d/(-c^2*d*x^2+d)^(1/2)+4*b*(a+b*arccosh(c*x))*arctanh(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2)
)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c^2/d/(-c^2*d*x^2+d)^(1/2)+2*b^2*polylog(2,-c*x-(c*x-1)^(1/2)*(c*x+1)^(1/2))*(c*
x-1)^(1/2)*(c*x+1)^(1/2)/c^2/d/(-c^2*d*x^2+d)^(1/2)-2*b^2*polylog(2,c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))*(c*x-1)^(
1/2)*(c*x+1)^(1/2)/c^2/d/(-c^2*d*x^2+d)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.45, antiderivative size = 196, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {5798, 5718, 5694, 4182, 2279, 2391} \[ \frac {2 b^2 \sqrt {c x-1} \sqrt {c x+1} \text {PolyLog}\left (2,-e^{\cosh ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {2 b^2 \sqrt {c x-1} \sqrt {c x+1} \text {PolyLog}\left (2,e^{\cosh ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {4 b \sqrt {c x-1} \sqrt {c x+1} \tanh ^{-1}\left (e^{\cosh ^{-1}(c x)}\right ) \left (a+b \cosh ^{-1}(c x)\right )}{c^2 d \sqrt {d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(x*(a + b*ArcCosh[c*x])^2)/(d - c^2*d*x^2)^(3/2),x]

[Out]

(a + b*ArcCosh[c*x])^2/(c^2*d*Sqrt[d - c^2*d*x^2]) + (4*b*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a + b*ArcCosh[c*x])*Ar
cTanh[E^ArcCosh[c*x]])/(c^2*d*Sqrt[d - c^2*d*x^2]) + (2*b^2*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*PolyLog[2, -E^ArcCosh
[c*x]])/(c^2*d*Sqrt[d - c^2*d*x^2]) - (2*b^2*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*PolyLog[2, E^ArcCosh[c*x]])/(c^2*d*S
qrt[d - c^2*d*x^2])

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 4182

Int[csc[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c + d*x)^m*Ar
cTanh[E^(-(I*e) + f*fz*x)])/(f*fz*I), x] + (-Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 - E^(-(I*e) + f*
fz*x)], x], x] + Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 + E^(-(I*e) + f*fz*x)], x], x]) /; FreeQ[{c,
 d, e, f, fz}, x] && IGtQ[m, 0]

Rule 5694

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> -Dist[(c*d)^(-1), Subst[Int[
(a + b*x)^n*Csch[x], x], x, ArcCosh[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0]

Rule 5718

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_.), x_
Symbol] :> Simp[((d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*(a + b*ArcCosh[c*x])^n)/(2*e1*e2*(p + 1)), x] - Dist[
(b*n*(-(d1*d2))^IntPart[p]*(d1 + e1*x)^FracPart[p]*(d2 + e2*x)^FracPart[p])/(2*c*(p + 1)*(1 + c*x)^FracPart[p]
*(-1 + c*x)^FracPart[p]), Int[(-1 + c^2*x^2)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c,
 d1, e1, d2, e2, p}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && GtQ[n, 0] && NeQ[p, -1] && IntegerQ[p + 1
/2]

Rule 5798

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist
[((-d)^IntPart[p]*(d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f*x)^m*(1 + c*
x)^p*(-1 + c*x)^p*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[c^2*d + e, 0]
 &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {x \left (a+b \cosh ^{-1}(c x)\right )^2}{\left (d-c^2 d x^2\right )^{3/2}} \, dx &=-\frac {\left (\sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {x \left (a+b \cosh ^{-1}(c x)\right )^2}{(-1+c x)^{3/2} (1+c x)^{3/2}} \, dx}{d \sqrt {d-c^2 d x^2}}\\ &=\frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {\left (2 b \sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {a+b \cosh ^{-1}(c x)}{-1+c^2 x^2} \, dx}{c d \sqrt {d-c^2 d x^2}}\\ &=\frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {\left (2 b \sqrt {-1+c x} \sqrt {1+c x}\right ) \operatorname {Subst}\left (\int (a+b x) \text {csch}(x) \, dx,x,\cosh ^{-1}(c x)\right )}{c^2 d \sqrt {d-c^2 d x^2}}\\ &=\frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {4 b \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\cosh ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {\left (2 b^2 \sqrt {-1+c x} \sqrt {1+c x}\right ) \operatorname {Subst}\left (\int \log \left (1-e^x\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {\left (2 b^2 \sqrt {-1+c x} \sqrt {1+c x}\right ) \operatorname {Subst}\left (\int \log \left (1+e^x\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{c^2 d \sqrt {d-c^2 d x^2}}\\ &=\frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {4 b \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\cosh ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {\left (2 b^2 \sqrt {-1+c x} \sqrt {1+c x}\right ) \operatorname {Subst}\left (\int \frac {\log (1-x)}{x} \, dx,x,e^{\cosh ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {\left (2 b^2 \sqrt {-1+c x} \sqrt {1+c x}\right ) \operatorname {Subst}\left (\int \frac {\log (1+x)}{x} \, dx,x,e^{\cosh ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}\\ &=\frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {4 b \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{\cosh ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {2 b^2 \sqrt {-1+c x} \sqrt {1+c x} \text {Li}_2\left (-e^{\cosh ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {2 b^2 \sqrt {-1+c x} \sqrt {1+c x} \text {Li}_2\left (e^{\cosh ^{-1}(c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.01, size = 210, normalized size = 1.07 \[ \frac {a^2+2 a b \cosh ^{-1}(c x)-2 a b \sqrt {\frac {c x-1}{c x+1}} (c x+1) \log \left (\tanh \left (\frac {1}{2} \cosh ^{-1}(c x)\right )\right )-2 b^2 \sqrt {\frac {c x-1}{c x+1}} (c x+1) \text {Li}_2\left (-e^{-\cosh ^{-1}(c x)}\right )+2 b^2 \sqrt {\frac {c x-1}{c x+1}} (c x+1) \text {Li}_2\left (e^{-\cosh ^{-1}(c x)}\right )+b^2 \cosh ^{-1}(c x) \left (\cosh ^{-1}(c x)-2 \sqrt {\frac {c x-1}{c x+1}} (c x+1) \left (\log \left (1-e^{-\cosh ^{-1}(c x)}\right )-\log \left (e^{-\cosh ^{-1}(c x)}+1\right )\right )\right )}{c^2 d \sqrt {d-c^2 d x^2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(x*(a + b*ArcCosh[c*x])^2)/(d - c^2*d*x^2)^(3/2),x]

[Out]

(a^2 + 2*a*b*ArcCosh[c*x] + b^2*ArcCosh[c*x]*(ArcCosh[c*x] - 2*Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x)*(Log[1 - E
^(-ArcCosh[c*x])] - Log[1 + E^(-ArcCosh[c*x])])) - 2*a*b*Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x)*Log[Tanh[ArcCosh
[c*x]/2]] - 2*b^2*Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x)*PolyLog[2, -E^(-ArcCosh[c*x])] + 2*b^2*Sqrt[(-1 + c*x)/
(1 + c*x)]*(1 + c*x)*PolyLog[2, E^(-ArcCosh[c*x])])/(c^2*d*Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

fricas [F]  time = 0.66, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {-c^{2} d x^{2} + d} {\left (b^{2} x \operatorname {arcosh}\left (c x\right )^{2} + 2 \, a b x \operatorname {arcosh}\left (c x\right ) + a^{2} x\right )}}{c^{4} d^{2} x^{4} - 2 \, c^{2} d^{2} x^{2} + d^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arccosh(c*x))^2/(-c^2*d*x^2+d)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*d*x^2 + d)*(b^2*x*arccosh(c*x)^2 + 2*a*b*x*arccosh(c*x) + a^2*x)/(c^4*d^2*x^4 - 2*c^2*d^2*x
^2 + d^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{2} x}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arccosh(c*x))^2/(-c^2*d*x^2+d)^(3/2),x, algorithm="giac")

[Out]

integrate((b*arccosh(c*x) + a)^2*x/(-c^2*d*x^2 + d)^(3/2), x)

________________________________________________________________________________________

maple [B]  time = 0.34, size = 542, normalized size = 2.77 \[ \frac {a^{2}}{c^{2} d \sqrt {-c^{2} d \,x^{2}+d}}-\frac {b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \mathrm {arccosh}\left (c x \right )^{2}}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}+\frac {2 b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \mathrm {arccosh}\left (c x \right ) \ln \left (1-c x -\sqrt {c x -1}\, \sqrt {c x +1}\right )}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}+\frac {2 b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \polylog \left (2, c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \mathrm {arccosh}\left (c x \right ) \ln \left (1+c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \polylog \left (2, -c x -\sqrt {c x -1}\, \sqrt {c x +1}\right )}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \mathrm {arccosh}\left (c x \right )}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}+\frac {2 a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \ln \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}-1\right )}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \ln \left (1+c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{c^{2} d^{2} \left (c^{2} x^{2}-1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a+b*arccosh(c*x))^2/(-c^2*d*x^2+d)^(3/2),x)

[Out]

a^2/c^2/d/(-c^2*d*x^2+d)^(1/2)-b^2*(-d*(c^2*x^2-1))^(1/2)/c^2/d^2/(c^2*x^2-1)*arccosh(c*x)^2+2*b^2*(-d*(c^2*x^
2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c^2/d^2/(c^2*x^2-1)*arccosh(c*x)*ln(1-c*x-(c*x-1)^(1/2)*(c*x+1)^(1/2))
+2*b^2*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c^2/d^2/(c^2*x^2-1)*polylog(2,c*x+(c*x-1)^(1/2)*(c*x
+1)^(1/2))-2*b^2*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c^2/d^2/(c^2*x^2-1)*arccosh(c*x)*ln(1+c*x+
(c*x-1)^(1/2)*(c*x+1)^(1/2))-2*b^2*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c^2/d^2/(c^2*x^2-1)*poly
log(2,-c*x-(c*x-1)^(1/2)*(c*x+1)^(1/2))-2*a*b*(-d*(c^2*x^2-1))^(1/2)/c^2/d^2/(c^2*x^2-1)*arccosh(c*x)+2*a*b*(-
d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c^2/d^2/(c^2*x^2-1)*ln(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2)-1)-2*a
*b*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c^2/d^2/(c^2*x^2-1)*ln(1+c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2)
)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {a^{2}}{\sqrt {-c^{2} d x^{2} + d} c^{2} d} + \int \frac {b^{2} x \log \left (c x + \sqrt {c x + 1} \sqrt {c x - 1}\right )^{2}}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}}} + \frac {2 \, a b x \log \left (c x + \sqrt {c x + 1} \sqrt {c x - 1}\right )}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arccosh(c*x))^2/(-c^2*d*x^2+d)^(3/2),x, algorithm="maxima")

[Out]

a^2/(sqrt(-c^2*d*x^2 + d)*c^2*d) + integrate(b^2*x*log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1))^2/(-c^2*d*x^2 + d)^(
3/2) + 2*a*b*x*log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1))/(-c^2*d*x^2 + d)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x\,{\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}^2}{{\left (d-c^2\,d\,x^2\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a + b*acosh(c*x))^2)/(d - c^2*d*x^2)^(3/2),x)

[Out]

int((x*(a + b*acosh(c*x))^2)/(d - c^2*d*x^2)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x \left (a + b \operatorname {acosh}{\left (c x \right )}\right )^{2}}{\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*acosh(c*x))**2/(-c**2*d*x**2+d)**(3/2),x)

[Out]

Integral(x*(a + b*acosh(c*x))**2/(-d*(c*x - 1)*(c*x + 1))**(3/2), x)

________________________________________________________________________________________